215 lines
9.4 KiB
GDScript
215 lines
9.4 KiB
GDScript
class_name FixedWingAircraft
|
|
extends CharacterBody3D
|
|
|
|
@export var performance: FixedWingAircraftPerformance
|
|
@export var controller: AircraftController
|
|
|
|
@export var initial_speed: float
|
|
|
|
@export var multiplayer_authority := 1 :
|
|
set(id):
|
|
multiplayer_authority = id
|
|
set_multiplayer_authority.call_deferred(id)
|
|
|
|
#var acceleration := Vector3
|
|
#var angular_velocity := Vector3
|
|
#var angular_acceleration := Vector3
|
|
var m_aoa: float
|
|
var m_sideslip: float
|
|
var m_tas: float
|
|
var m_ias: float
|
|
var m_relative_velocity: Vector3
|
|
|
|
var m_is_landed := false
|
|
|
|
@onready var m_region_transform: RegionTransform = $RegionTransform
|
|
|
|
func _ready() -> void:
|
|
velocity = -global_basis.z * initial_speed
|
|
m_relative_velocity = transform.basis.inverse() * velocity
|
|
m_tas = _tas(m_relative_velocity)
|
|
m_ias = _ias(m_relative_velocity)
|
|
|
|
func _physics_process(delta: float) -> void:
|
|
|
|
m_relative_velocity = transform.basis.inverse() * velocity
|
|
m_aoa = -atan2(m_relative_velocity.y, -m_relative_velocity.z)
|
|
if m_aoa > PI:
|
|
m_aoa -= TAU
|
|
m_sideslip = -atan2(m_relative_velocity.x, -m_relative_velocity.z)
|
|
if m_sideslip > PI:
|
|
m_sideslip -= TAU
|
|
m_tas = _tas(m_relative_velocity)
|
|
m_ias = _ias(m_relative_velocity)
|
|
|
|
# aero
|
|
var vel_forward := m_relative_velocity.normalized()
|
|
var vel_right := vel_forward.cross(Vector3.UP).normalized()
|
|
var vel_up := vel_right.cross(vel_forward).normalized()
|
|
#var vel_basis := Basis(vel_right, vel_up, vel_forward)
|
|
var linear_forces := Vector3.ZERO
|
|
|
|
var horiz_lift := _lift(performance.horizontal_surface,
|
|
performance.horizontal_area,
|
|
performance.horizontal_aspect_ratio,
|
|
performance.horizontal_sweep,
|
|
m_aoa, m_tas)
|
|
var horiz_drag := _drag(performance.horizontal_surface,
|
|
performance.horizontal_area,
|
|
performance.horizontal_aspect_ratio,
|
|
performance.horizontal_sweep,
|
|
m_aoa, m_tas)
|
|
var vert_lift := _lift(performance.vertical_surface,
|
|
performance.vertical_area,
|
|
performance.vertical_aspect_ratio,
|
|
performance.vertical_sweep,
|
|
m_sideslip, m_tas)
|
|
var vert_drag := _drag(performance.vertical_surface,
|
|
performance.vertical_area,
|
|
performance.vertical_aspect_ratio,
|
|
performance.vertical_sweep,
|
|
m_sideslip, m_tas)
|
|
|
|
linear_forces += vel_up * horiz_lift
|
|
linear_forces += vel_right * vert_lift
|
|
linear_forces -= vel_forward * horiz_drag
|
|
linear_forces -= vel_forward * vert_drag
|
|
linear_forces += Vector3.FORWARD * _thrust()
|
|
m_relative_velocity += linear_forces * delta / performance.empty_mass
|
|
velocity = (transform.basis * m_relative_velocity) + (get_gravity() * delta)
|
|
|
|
# steering
|
|
var steering_axis := _get_steering_axis() * delta
|
|
if (steering_axis.length_squared() > 0.0):
|
|
rotate_object_local(steering_axis.normalized(), steering_axis.length())
|
|
|
|
move_and_slide()
|
|
#m_region_transform.sync_from_transform()
|
|
#if !is_landed:
|
|
# _fly()
|
|
#else:
|
|
# taxi()
|
|
#ResetControls()
|
|
|
|
@rpc("authority", "call_remote", "unreliable_ordered")
|
|
func _sync(pos: Vector3, rot: Basis, vel: Vector3, steering_axis: Vector3) -> void:
|
|
# Don't snap to the correct location, because that will look bad.
|
|
# Instead, just nudge it in the right direction.
|
|
#var rtt: float = multiplayer.get_peers().
|
|
#transform.basis = rot.rotated(steering_axis.normalized(), steering_axis.length() * )
|
|
pass
|
|
|
|
func _get_steering_axis() -> Vector3:
|
|
var pitch_effect := Vector3.RIGHT * performance.pitch_power.sample(absf(rad_to_deg(m_aoa))) * controller.pitch
|
|
var yaw_effect := performance.yaw_axis.normalized() * performance.yaw_power.sample(absf(rad_to_deg(m_sideslip))) * controller.yaw
|
|
var roll_effect := performance.roll_axis.normalized() * performance.roll_power.sample(absf(rad_to_deg(m_aoa))) * controller.roll
|
|
return (pitch_effect + yaw_effect + roll_effect) * m_ias / performance.reference_ias_mps
|
|
|
|
func _lift(foil: Airfoil,
|
|
area: float,
|
|
aspect_ratio: float,
|
|
_sweep: float,
|
|
aoa: float,
|
|
tas: float) -> float:
|
|
# https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/downwash-effects-on-lift/
|
|
var Cl0: float
|
|
if absf(aoa) < PI / 9:
|
|
Cl0 = foil.lift_curve.sample(rad_to_deg(aoa))
|
|
else:
|
|
Cl0 = sin(aoa * 2.0) * 2.0
|
|
var Cl := Cl0 / (1.0 + Cl0 / (PI * aspect_ratio))
|
|
return Cl * area * tas * tas * Atmosphere.density_by_alt(position.y) * 0.5
|
|
|
|
func _drag(foil: Airfoil,
|
|
area: float,
|
|
_aspect_ratio: float,
|
|
_sweep: float,
|
|
aoa: float,
|
|
tas: float) -> float:
|
|
var Dl0: float
|
|
if absf(aoa) < PI / 9:
|
|
Dl0 = foil.drag_curve.sample(rad_to_deg(aoa))
|
|
else:
|
|
Dl0 = sin(aoa) * sin(aoa) * 10.0
|
|
#var Dl := Dl0 / (1.0 + Dl0 / (PI * aspect_ratio))
|
|
return Dl0 * area * tas * tas * Atmosphere.density_by_alt(position.y) * 0.5
|
|
|
|
func _moment(foil: Airfoil,
|
|
area: float,
|
|
aspect_ratio: float,
|
|
_sweep: float,
|
|
aoa: float,
|
|
tas: float) -> float:
|
|
var Ml0 := foil.lift_curve.sample(rad_to_deg(aoa))
|
|
#var Ml := Ml0 / (1.0 + Ml0 / (PI * aspect_ratio))
|
|
var mean_chord := sqrt(area / aspect_ratio)
|
|
return Ml0 * area * tas * tas * Atmosphere.density_by_alt(position.y) * 0.5 * mean_chord
|
|
|
|
func _thrust() -> float:
|
|
var speed_contrib := performance.propultion.propultion_speed_curve.sample(Atmosphere.mach_by_alt(position.y, m_tas))
|
|
var density_contrib := performance.propultion.propultion_density_curve.sample(Atmosphere.density_by_alt(position.y, true))
|
|
var temp_contrib := performance.propultion.propultion_temperature_curve.sample(Atmosphere.temperature_by_alt(position.y))
|
|
return speed_contrib * density_contrib * temp_contrib * performance.base_thrust * controller.throttle
|
|
|
|
#func _fly() -> void:
|
|
#acceleration = Vector3.DOWN * global_basis * gravity
|
|
#if controller.brake > 0.0:
|
|
# mThrust -= performance.braking_power * _ias()
|
|
#acceleration += Vector3.FORWARD * mThrust / mass;
|
|
#lift();
|
|
#control();
|
|
#velocity += mAcceleration * Time.fixedDeltaTime;
|
|
#transform.Translate(velocity * Time.fixedDeltaTime * iScale);
|
|
#Vector3 prevVel = transform.TransformDirection(velocity);
|
|
#transform.Rotate(mAngularVelocity * Time.fixedDeltaTime);
|
|
#velocity = transform.InverseTransformDirection(prevVel);
|
|
# Check to see if we've landed
|
|
#if (isLandingGearDeployed)
|
|
#{
|
|
# RaycastHit ground;
|
|
# Physics.Raycast(transform.position, -transform.up, out ground, rideHeight, 0xFF, QueryTriggerInteraction.Ignore);
|
|
# if (ground.collider != null && ground.distance < rideHeight)
|
|
# {
|
|
# AttemptLanding(ref ground);
|
|
# }
|
|
#}
|
|
|
|
#func lift() -> void:
|
|
# var speed_sqr_YZ := velocity.y * velocity.y + velocity.z * velocity.z
|
|
# var speed_sqr_XZ := velocity.x * velocity.x + velocity.z * velocity.z
|
|
# var altitude := Atmosphere.altitude(position.y)
|
|
# float horizLiftPerCoeff = speed_sqr_YZ * horizWingArea * Atmosphere.Density(altitude, true) * 0.5f / mass;
|
|
# float vertLiftPerCoeff = speed_sqr_XZ * vertWingArea * Atmosphere.Density(altitude, true) * 0.5f / mass;
|
|
# float degAoA = AoA * Mathf.Rad2Deg;
|
|
# float degSideslip = sideslip * Mathf.Rad2Deg;
|
|
# float wingDrag = horizAirfoil.getDrag(degAoA) * horizWingArea + vertAirfoil.getDrag(degSideslip) * vertWingArea;
|
|
# float mach = Atmosphere.Mach(altitude, velocity.magnitude);
|
|
# if (mach > 0.7f) # No need to do expensive calculations unless we're going fast enough for them to matter.
|
|
# {
|
|
# wingDrag += 3 * wingDrag * Mathf.Min(Mathf.Exp(16 * (mach - 1.0f + Mathf.Log10(1 - wingSweep / 90.0f))), Mathf.Exp(-mach + 1.0f));
|
|
# }
|
|
# float totalDrag = indicatedVelocity.sqrMagnitude * Atmosphere.Density(altitude, true) * 0.5f * (wingDrag + bodyDragCoeff * frontalArea) / mass;
|
|
# Vector3 relativeAccel = new Vector3(-vertAirfoil.getLift(degSideslip) * vertLiftPerCoeff, horizAirfoil.getLift(degAoA) * horizLiftPerCoeff, -totalDrag);
|
|
# Vector3 fixedAcceleration = TransformR(relativeAccel);
|
|
# if ((velocity.x + mAcceleration.x * Time.fixedDeltaTime) * velocity.x < 0.0f)
|
|
# {
|
|
# fixedAcceleration.x = -velocity.x / Time.fixedDeltaTime;
|
|
# }
|
|
# if ((velocity.y + mAcceleration.y * Time.fixedDeltaTime) * velocity.y < 0.0f)
|
|
# {
|
|
# fixedAcceleration.y = -velocity.y / Time.fixedDeltaTime;
|
|
# }
|
|
# acceleration += fixedAcceleration;
|
|
# mAngularVelocity = new Vector3(horizAirfoil.getMoment(degAoA) * horizLiftPerCoeff, vertAirfoil.getMoment(degSideslip) * vertLiftPerCoeff, 0f);
|
|
# mAngularVelocity += new Vector3(-moment * Mathf.Cos(Vector3.Angle(Physics.gravity, transform.up) * Mathf.Deg2Rad) * horizLiftPerCoeff, 0.0f, 0.0f)
|
|
|
|
func _tas(relative_velocity: Vector3) -> float:
|
|
return relative_velocity.length() * -sign(relative_velocity.z)
|
|
|
|
func _ias(relative_velocity: Vector3) -> float:
|
|
return _tas(relative_velocity) * sqrt(Atmosphere.density_by_alt(position.y, true))
|
|
|
|
#func _
|
|
|
|
#func _g_force() -> Vector3:
|
|
# return (acceleration - transform.inverse(get_gravity())) / get_gravity().length()
|